我想从图像中生成骨架。由于使用原始图像的 skimage
生成的边缘不平滑,因此从 binary
获得的生成的 skeleton
具有带结的断开边缘。
import skimage
from skimage import data,io,filters
import numpy as np
import cv2
import matplotlib.pyplot as plt
from skimage.filters import threshold_adaptive,threshold_mean
from skimage.morphology import binary_dilation
from skimage import feature
from skimage.morphology import skeletonize_3d
imgfile = "edit.jpg"
image = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
thresh = threshold_mean(image)
binary = image > thresh
edges = filters.sobel(binary)
dilate = feature.canny(binary,sigma=0)
skeleton = skeletonize_3d(binary)
fig, axes = plt.subplots(nrows=2,ncols=2, figsize=(8, 2))
ax = axes.ravel()
ax[0].imshow(binary, cmap=plt.cm.gray)
ax[0].set_title('binarize')
ax[1].imshow(edges, cmap=plt.cm.gray)
ax[1].set_title('edges')
ax[2].imshow(dilate, cmap=plt.cm.gray)
ax[2].set_title('dilates')
ax[3].imshow(skeleton, cmap=plt.cm.gray)
ax[3].set_title('skeleton')
for a in ax:
a.axis('off')
plt.show()
我尝试使用 dilate
来平滑锯齿状边缘。但是 骨架
中的轮廓有两条边,而不是所需的一条边。
我想就如何平滑边缘以避免生成的骨架
中的结和断开的边缘提出建议。
输入图片
输出图片
编辑:使用高斯平滑后
binary = image > thresh
gaussian = skimage.filters.gaussian(binary)
skeleton = skeletonize_3d(gaussian)
请您参考如下方法:
这个中值滤波器应该对您的二值图像进行骨架化处理。
import scipy
binary_smoothed = scipy.signal.medfilt (binary, 3)
对于边框,我可能会使用它并使用下面链接中显示的参数 https://claudiovz.github.io/scipy-lecture-notes-ES/advanced/image_processing/auto_examples/plot_canny.html :
from image_source_canny import canny
borders = canny (binary_smoothed, 3, 0.3, 0.2)