基于 Linux-4.19.153
一、相关结构成员描述
1. struct root_domain
实时调度器需要几个全局的或者说系统范围的资源来作出调度决定,以及 CPU 数量的增加而出现的可伸缩性瓶颈(由于锁保护的这些资源的竞争),Root Domain 引入的目的就是为了减少这样的竞争以改善可伸缩性。
cpuset 提供了一个把 CPU 分成子集被一个进程或者或一组进程使用的机制。几个 cpuset 可以重叠。如果没有其他的 cpuset 包含重叠的 CPU,这个 cpuset 被称为“互斥的(exclusive)”。每个互斥的 cpuset 定义了一个与其他 cpuset 或 CPU 分离的孤岛域(isolated domain,也叫作 root domain)。与每个 root domian 有关的信息存在 struct root_domain 结构(对象)中:
//kernel/sched/sched.h /* * 我们添加了 root-domain 的概念,用于定义 per-domain 的变量。 * 每个互斥的 cpuset 本质上通过将成员 CPU 与其他任何 cpuset 完 * 全划分开来定义一个岛域。每当创建一个新的独占 cpuset 时,我们也 * 会创建并附加一个新的 root-domain 对象。 */ struct root_domain { //root domain 的引用计数,当 rd 被运行队列引用时加1,反之减1 atomic_t refcount; //实时任务过载的(rt overload)的CPU的数目 atomic_t rto_count; struct rcu_head rcu; //属于该 rd 的CPU掩码 cpumask_var_t span; cpumask_var_t online; /* * Indicate pullable load on at least one CPU, e.g: * - More than one runnable task * - Running task is misfit */ //表明该 rd 有任一CPU有多于一个的可运行任务 int overload; /* Indicate one or more cpus over-utilized (tipping point) */ int overutilized; /* * The bit corresponding to a CPU gets set here if such CPU has more * than one runnable -deadline task (as it is below for RT tasks). */ cpumask_var_t dlo_mask; atomic_t dlo_count; struct dl_bw dl_bw; struct cpudl cpudl; /* * Indicate whether a root_domain's dl_bw has been checked or * updated. It's monotonously increasing value. * * Also, some corner cases, like 'wrap around' is dangerous, but given * that u64 is 'big enough'. So that shouldn't be a concern. */ u64 visit_gen; #ifdef HAVE_RT_PUSH_IPI /* * For IPI pull requests, loop across the rto_mask. */ struct irq_work rto_push_work; raw_spinlock_t rto_lock; /* These are only updated and read within rto_lock */ int rto_loop; int rto_cpu; /* These atomics are updated outside of a lock */ atomic_t rto_loop_next; atomic_t rto_loop_start; #endif /* * The "RT overload" flag: it gets set if a CPU has more than * one runnable RT task. */ //某CPU有多于一个的可运行实时任务,对应的位被设置 cpumask_var_t rto_mask; //包含在 rd 中的CPU优先级管理结构成员 struct cpupri cpupri; unsigned long max_cpu_capacity; /* * NULL-terminated list of performance domains intersecting with the * CPUs of the rd. Protected by RCU. */ struct perf_domain __rcu *pd; };
这些 rd 被用于减小 per-domain 变量的全局变量的范围。无论何时一个互斥 cpuset 被创建,一个新 root domain 对象也会被创建,信息来自 CPU 成员。缺省情况下,一个单独的高层次的 rd 被创建,并把所有 CPU 作为成员。所有的实时调度决定只在一个 rd 的范围内作出决定。
2. struct task_struct
struct task_struct { ... struct sched_rt_entity rt; #ifdef CONFIG_SMP /*符合条件的RT认为通过此成员挂入 rq->rt.pushable_tasks 链表,表示是可push的任务*/ struct plist_node pushable_tasks; struct rb_node pushable_dl_tasks; #endif ... };
二、CPU优先级管理
1. CPU优先级管理(CPU Priority Management)跟踪系统中每个 CPU 的优先级,为了让进程迁移的决定更有效率。CPU优先级有 102 个,下面是cpupri与prio的对应关系:
//kernel/sched/cpupri.h cpupri prio ---------------------------- CPUPRI_INVALID (-1) -1 CPUPRI_IDLE(0) MAX_PRIO(140) CPUPRI_NORMAL(1) MAX_RT_PRIO ~ MAX_PRIO-1 (100~139) 2~101 99~0
注意,运行idle任务的CPU的cpupri=0,运行CFS任务的CPU的cpupri=1。
static int convert_prio(int prio) { int cpupri; if (prio == CPUPRI_INVALID) /* -1 */ cpupri = CPUPRI_INVALID; /* -1 */ else if (prio == MAX_PRIO) /* 140 */ cpupri = CPUPRI_IDLE; /* 0 */ else if (prio >= MAX_RT_PRIO) /* 100 */ cpupri = CPUPRI_NORMAL; /* 1 */ else cpupri = MAX_RT_PRIO - prio + 1; /* 100 - prio + 1 */ return cpupri; }
传参prio=99返回0,传参prio=100返回100.
cpupri 数值越大表示优先级越高(用了减法)。处于 CPUPRI_INVALID 状态的 CPU 没有资格参与 task routing。cpupri 属于 root domain的,每个互斥的 cpuset 由一个含有 cpupri 数据的 root momain 组成。系统从两个维度的位映射来维护这些 CPU 状态:
(1) CPU 的优先级,由任务优先级映射而来。
(2) 在某个优先级上的 CPU。
2. 相关数据结构
//kernel/sched/cpupri.h struct cpupri_vec { //在这个优先级上的 CPU 的数量 atomic_t count; //在这个优先级上的 CPU 位码 cpumask_var_t mask; }; //体现两个维度 struct cpupri { //持有关于一个 cpuset 在 某个特定的优先级上的 所有 CPU 的信息 struct cpupri_vec pri_to_cpu[CPUPRI_NR_PRIORITIES]; //指示一个 CPU 的优先级,指向一个数组,每个CPU一个成员,主要用于记录当前cpu的cpupri值,便于更新修改。 int *cpu_to_pri; };
通过 cpupri_find()/cpupri_find_fitness() 和 cpupri_set() 来查找和设置 CPU 优先级是实时负载均衡快速找到要迁移的任务的关键。
3. cpupri_set() 函数
(1) 函数分析
/** * cpupri_set - update the CPU priority setting * @cp: The cpupri context * @cpu: The target CPU * @newpri: The priority (INVALID,NORMAL,RT1-RT99,HIGHER) to assign to this CPU * * Note: Assumes cpu_rq(cpu)->lock is locked * * Returns: (void) */ void cpupri_set(struct cpupri *cp, int cpu, int newpri) { //获取当前cpu的cpupri int *currpri = &cp->cpu_to_pri[cpu]; int oldpri = *currpri; int do_mb = 0; //将p->prio转换为cpuprio newpri = convert_prio(newpri); BUG_ON(newpri >= CPUPRI_NR_PRIORITIES); if (newpri == oldpri) return; //若是cpupri变化了,就更新此cpupri对应的信息 if (likely(newpri != CPUPRI_INVALID)) { struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; cpumask_set_cpu(cpu, vec->mask); smp_mb__before_atomic(); atomic_inc(&(vec)->count); do_mb = 1; } //然后删除旧信息 if (likely(oldpri != CPUPRI_INVALID)) { struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; if (do_mb) smp_mb__after_atomic(); atomic_dec(&(vec)->count); smp_mb__after_atomic(); cpumask_clear_cpu(cpu, vec->mask); } *currpri = newpri; }
举个例子,比如CPU2上的任务从prio=120的CFS任务切换为了prio=97的RT任务,此时先读取cp->cpu_to_pri[2]当前的cpupri的值,由于CPU2上先前运行的是CFS任务,因为读取的值是1。然后计算新任务运行下new-cpupri为101-97=4,于是将CPU2的掩码设置进cp->pri_to_cpu[4] 的 vec->mask 中,并将 vec->count 计数加1,表示处于cpupri=4优先级的CPU又增加了一个CPU2。然后将CPU2从cp->pri_to_cpu[1] 的 vec->mask 中删除,并将 vec->count 计数减1,表示cpupri=1优先级的CPU又减少一个CPU2。
(2) cpupri_set()的调用路径:
rt_sched_class.rq_offline 回调 rq_offline_rt //传参(cpupri, rq->cpu, CPUPRI_INVALID) rt_sched_class.rq_online 回调 rq_online_rt enqueue_rt_entity dequeue_rt_entity dequeue_rt_stack __dequeue_rt_entity dec_rt_tasks dec_rt_prio dec_rt_prio_smp enqueue_rt_entity dequeue_rt_entity __enqueue_rt_entity inc_rt_tasks inc_rt_prio inc_rt_prio_smp cpupri_set
可见主要是在enqueue/dequeue RT任务的路径中调用,应该是当一个CPU其上任务切换的时候调用,由于CFS任务的cpupri都是1,所以只有涉及RT的任务切换才会调用,调用函数都在rt.c中。
三、PUSH任务迁移
1. PUSH任务的基本思想
根据cpupri搜索出一组cpu优先级最低的cpu作为候选cpu,然后从候选cpu中选出一个cpu作为目标cpu,然后push本rq上queue者的优先级最高的并且可push的RT任务过去。持续循环执行,直到没有可push的任务为止。
源cpu就是 push_rt_task(struct rq *rq) 参数中的rq所属的cpu,从这个cpu的rq上往外push RT任务。
2. PUSH任务的时机
push_rt_task()函数会在以下时间点被调用:
(1) rt_mutex锁优先级改变、__sched_setscheduler()导致调度类改变、__schedule()任务切换
rt_mutex_setprio //core.c __sched_setscheduler //core.c check_class_changed //core.c 在调度类改变的时候调用,会先调用上一个调度类的switched_from,再调用下一个调度类的switched_to rt_sched_class.switched_to //rt.c 回调 switched_to_rt //rt.c 若p在rq上且不是rq上正在运行的任务,且p运行在多个cpu上运行且rq->rt.overload了,才调用 __schedule //core.c pick_next_task //core.c 选择下一个任务 rt_sched_class.pick_next_task //rt.c 回调 pick_next_task_rt //rt.c 无条件调用 rt_queue_push_tasks //rt.c 判断参数rq上有可push的任务,即 rq->rt.pushable_tasks 链表不为空调用 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); //rt.c 头插法挂入 rq->balance_callback 链表
回调时机:
__sched_setscheduler rt_mutex_setprio schedule_tail //core.c 没有找到调用的地方 __schedule //core.c 任务切换函数最后调用 balance_callback //core.c __balance_callback //core.c 依次回调 rq->balance_callback 链表上的所有函数,持rq->lock关中断调用的
(2) 有cpu执行拉RT任务的时候,告诉其它CPU推出去一些任务
pull_rt_task(rq) //rt.c 使能 RT_PUSH_IPI 时才会执行,在拉任务时触发push. rq为当前队列,告诉其它cpu往当前cpu上push一些任务 tell_cpu_to_push //rt.c 有rto的cpu才queue irq_work_queue_on(&rq->rd->rto_push_work, cpu); rto_push_irq_work_func //发现有可push的任务,持有rq->lock spin锁调用 push_rt_tasks(rq) irq_work_queue_on(&rd->rto_push_work, cpu); //自己queue自己,只要有rto的cpu就不断queue自己,构成一个"内核线程"一直运行,直到没有rto的cpu. init_rootdomain init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
(3) 若唤醒的是RT任务又认为不能及时得到调度执行,就将其从唤醒的rq上push走
ttwu_do_wakeup //core.c wake_up_new_task //core.c rt_sched_class.task_woken //调度类回调 task_woken_rt //rt.c push_rt_tasks(rq)
task_woken_rt() 中调用 push_rt_tasks() 的条件比较苛刻,如下。表示为唤醒的任务p不是rq上正在running的任务,且当前rq也没有设置resched标志位(不会马上重新调度),且p也允许在其它CPU上运行,且rq当前正在运行的任务是DL或RT任务,且rq的当前任务只能在当前CPU运行或优先级比p更高。才会调用push_rt_tasks()将唤醒的RT任务push走。
static void task_woken_rt(struct rq *rq, struct task_struct *p) { if (!task_running(rq, p) && !test_tsk_need_resched(rq->curr) && p->nr_cpus_allowed > 1 && (dl_task(rq->curr) || rt_task(rq->curr)) && (rq->curr->nr_cpus_allowed < 2 || rq->curr->prio <= p->prio)) push_rt_tasks(rq); }
3. PUSH任务的结束条件
见 push_rt_tasks(rq),从rq上一直往外push任务,直到没有任务可push了才停止。
4. PUSH任务逻辑实现——push_rt_tasks()
(1) push_rt_tasks()
//rt.c 作用:从参数rq上推一些任务到其它rq上 static void push_rt_tasks(struct rq *rq) { /* push_rt_task will return true if it moved an RT */ while (push_rt_task(rq)) //如果有任务可PUSH将一直执行下去 ; }
(2) push_rt_task()
/* * If the current CPU has more than one RT task, see if the non * running task can migrate over to a CPU that is running a task * of lesser priority. */ //push出去任务了返回1,否则返回0 static int push_rt_task(struct rq *rq) { struct task_struct *next_task; struct rq *lowest_rq; int ret = 0; /* update_rt_migration()中设置,多余1个RT任务且有可迁移的RT任务设置为1 */ if (!rq->rt.overloaded) return 0; //从rq->rt.pushable_tasks链表头取出可push的task,最先取出的是优先级最高的RT task. next_task = pick_next_pushable_task(rq); if (!next_task) return 0; retry: //取出来的应该是Runnable的,而不能是正在running的任务 if (unlikely(next_task == rq->curr)) { WARN_ON(1); return 0; } /* * It's possible that the next_task slipped in of * higher priority than current. If that's the case * just reschedule current. * 翻译: * next_task 是可能比当前的优先级更高的,如果是这种情况, * 只需触发一次重新调度。 */ if (unlikely(next_task->prio < rq->curr->prio)) { resched_curr(rq); return 0; } /* We might release rq lock */ get_task_struct(next_task); /* find_lock_lowest_rq locks the rq if found */ //根据cpupri找到cpu优先级最低cpu作为任务要push到的目的cpu lowest_rq = find_lock_lowest_rq(next_task, rq); //1.如果 lowest_rq 没有找到 if (!lowest_rq) { struct task_struct *task; /* * find_lock_lowest_rq releases rq->lock * so it is possible that next_task has migrated. * * We need to make sure that the task is still on the same * run-queue and is also still the next task eligible for pushing. * 翻译: * find_lock_lowest_rq 释放 rq->lock,因此 next_task 可能已被迁移走了。 * 需要确保任务仍然还在这个rq中,并且仍然是下一个有资格被推送的任务。因此 * 需要再重新执行一次这个函数。 */ task = pick_next_pushable_task(rq); //(1)重新选出的待push task还是原来的task if (task == next_task) { /* * The task hasn't migrated, and is still the next * eligible task, but we failed to find a run-queue * to push it to. Do not retry in this case, since * other CPUs will pull from us when ready. * 翻译: * 该任务尚未迁移,仍然是下一个符合条件的任务,但我们未能找到将其推送到的目 * 标运行队列。 在这种情况下不要重试,因为其他 CPU 会在准备好时从我们这里拉取。 */ goto out; } //(2)重新选出的待push task不是原来的task if (!task) /* No more tasks, just exit */ goto out; /* Something has shifted, try again. */ //再次选出的是不同的task了,重新试一次 put_task_struct(next_task); next_task = task; goto retry; } //2.如果 lowest_rq 没有找到了,就将任务从rq上摘下放到lowest_rq上 deactivate_task(rq, next_task, 0); set_task_cpu(next_task, lowest_rq->cpu); activate_task(lowest_rq, next_task, 0); ret = 1; //对目标lowest_rq触发一次重新调度 resched_curr(lowest_rq); //CONFIG_LOCKDEP相关,若是没有使能只是释放lowest_rq->lock double_unlock_balance(rq, lowest_rq); out: put_task_struct(next_task); return ret; }
(3) pick_next_pushable_task()
选择出rq上queue着状态的优先级最高的RT任务,优先push优先级最高的RT任务。
static struct task_struct *pick_next_pushable_task(struct rq *rq) //rt.c { struct task_struct *p; //rq->rt.pushable_tasks 链表不为空表示有可push的任务 if (!has_pushable_tasks(rq)) return NULL; //first也就使链表上优先级最高的那个RT任务,也就是push rq上queue着的最高优先级的RT任务 p = plist_first_entry(&rq->rt.pushable_tasks, struct task_struct, pushable_tasks); BUG_ON(rq->cpu != task_cpu(p)); /*校验p是挂载在此cpu rq上的*/ BUG_ON(task_current(rq, p)); /*return rq->curr == p;校验p不是正在运行的任务*/ BUG_ON(p->nr_cpus_allowed <= 1);/*校验p是允许在多个cpu上运行的,否则不能push*/ BUG_ON(!task_on_rq_queued(p)); /*return p->on_rq == TASK_ON_RQ_QUEUED; 校验p是queue在rq上的*/ BUG_ON(!rt_task(p)); /*return prio < 100 校验p必须是RT任务*/ return p; }
(4) find_lock_lowest_rq()
根据cpupri找出cpu优先级最低的cpu作为push任务的目标cpu.
/* Will lock the rq it finds */ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) { struct rq *lowest_rq = NULL; int tries; int cpu; //最大try 3次 for (tries = 0; tries < RT_MAX_TRIES; tries++) { //选择一个cpu优先级最低的cpu(比task运行的cpu的优先级低,否则返回-1) cpu = find_lowest_rq(task); //没找到的话cpu==-1可能成立,或后面的恒不会成立 if ((cpu == -1) || (cpu == rq->cpu)) break; //找到了task要被push到的目标cpu的rq lowest_rq = cpu_rq(cpu); //这个if判断有可能成立,因为没有持lowest_rq的锁,它上面可能又queue了高优先级的任务 if (lowest_rq->rt.highest_prio.curr <= task->prio) { /* * Target rq has tasks of equal or higher priority, * retrying does not release any lock and is unlikely * to yield a different result. * 翻译: * 目标 rq 具有相同或更高优先级的任务,重试不会释放任何锁 * 并且不太可能产生不同的结果。因此放弃retry,返回没找到lowest_rq。 */ lowest_rq = NULL; break; } /* if the prio of this runqueue changed, try again */ //? ############### //下面是做一些校验,主要是判断环境有没有变化来判断是否应该将lowest_rq置为NULL if (double_lock_balance(rq, lowest_rq)) { /* * We had to unlock the run queue. In the mean time, task could have * migrated already or had its affinity changed. * Also make sure that it wasn't scheduled on its rq. */ if (unlikely(task_rq(task) != rq || !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) || task_running(rq, task) || !rt_task(task) || !task_on_rq_queued(task))) { double_unlock_balance(rq, lowest_rq); lowest_rq = NULL; break; } } /* If this rq is still suitable use it. */ //大概率是成功的,满足就不retry了,直接返回找到的lowest_rq if (lowest_rq->rt.highest_prio.curr > task->prio) break; /* try again */ double_unlock_balance(rq, lowest_rq); lowest_rq = NULL; } return lowest_rq; }
5. 何时往 rq->rt.pushable_tasks 链表上添加可push的任务
在 enqueue_task_rt 中,只有当p不是正在执行的任务且可以在多个CPU上运行时才会挂入 p->pushable_tasks 链表,p->prio越小优先级高的越挂在靠前的位置。
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) { plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); plist_node_init(&p->pushable_tasks, p->prio); //p->prio值越小,插入的位置越靠前 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); /* Update the highest prio pushable task */ if (p->prio < rq->rt.highest_prio.next) rq->rt.highest_prio.next = p->prio; } static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) { plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); /* Update the new highest prio pushable task */ if (has_pushable_tasks(rq)) { p = plist_first_entry(&rq->rt.pushable_tasks, struct task_struct, pushable_tasks); rq->rt.highest_prio.next = p->prio; } else rq->rt.highest_prio.next = MAX_RT_PRIO; }
调用路径:
rt_sched_class.enqueue_task enqueue_task_rt //rt.c 在函数最后执行,只有当p满足不是正在执行的任务且满足可以在多于1个CPU上运行才调用 enqueue_pushable_task(rq, p); rt_sched_class.dequeue_task dequeue_task_rt //无条件执行 dequeue_pushable_task(rq, p);
6. rt_rq->overloaded 标志的设置
在enqueue/dequeue RT任务时,判断rt_rq上有可迁移的实时任务时更新。
static void update_rt_migration(struct rt_rq *rt_rq) { if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { if (!rt_rq->overloaded) { //rd->rto_count++ 和设置更新rd->rto_mask cpu掩码 rt_set_overload(rq_of_rt_rq(rt_rq)); rt_rq->overloaded = 1; } } else if (rt_rq->overloaded) { //rd->rto_count-- 和清除更新rd->rto_mask cpu掩码 rt_clear_overload(rq_of_rt_rq(rt_rq)); rt_rq->overloaded = 0; } }
调用路径:
__enqueue_rt_entity inc_rt_tasks inc_rt_migration //无条件调用,无条件 rt_rq->rt_nr_total++,若p允许在多于一个cpu上运行才执行 rt_rq->rt_nr_migratory++; __dequeue_rt_entity dec_rt_tasks dec_rt_migration //无条件调用,无条件执行 rt_rq->rt_nr_total--,若p允许在多于一个cpu上运行才执行 rt_rq->rt_nr_migratory--; update_rt_migration
四、PULL任务迁移
1. PULL任务的基本思想
当选下一个RT任务时,若发现rq上的最高优先级的RT任务的优先级比prev还低,就认为需要pull rt任务过来。此时又分两种情况:
(1) 不使能 RT_PUSH_IPI
从runnable RT最高优先级比自己高的cpu上拉rt任务过来,对每个cpu都执行这样的操作,然后触发本cpu抢占调度。
(2) 使能 RT_PUSH_IPI
采用逐个向每个rto cpu上queue irq_work 的方式来触发rto cpu进行push task,然后走push task的处理逻辑,以push task的方式代替pull task.
2. PULL任务的时机
rt_mutex_setprio //core.c __sched_setscheduler //core.c check_class_changed //core.c rt_sched_class.switched_from switched_from_rt //若p是runnable的rt任务且rq上已经没有rt任务在运行了调用 check_class_changed rt_sched_class.prio_changed prio_changed_rt //若p是当前正在执行的任务且其优先级降低了调用 rt_queue_pull_task queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); rt_sched_class.pick_next_task pick_next_task_rt //判断需要pull时才pull pull_rt_task
执行时机一,在要选择下一个RT任务时。need_pull_rt_task用来判断是否需要pull任务,只要当前rq上queue的RT线程的最高优先级还比prev任务的优先级低,就认为需要pull任务到rq中来。
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) { /* Try to pull RT tasks here if we lower this rq's prio */ return rq->rt.highest_prio.curr > prev->prio; }
调用时机二,queue_balance_callback,同 push_rt_task
3. PULL任务逻辑实现——pull_rt_task()
3.1 先看没有使能 RT_PUSH_IPI sched feat 的情况
(1) pull_rt_task 函数
static void pull_rt_task(struct rq *this_rq) { int this_cpu = this_rq->cpu, cpu; bool resched = false; struct task_struct *p; struct rq *src_rq; //return rq->rd->rto_count, 只要一个cpu上有可迁移的任务就加1 int rt_overload_count = rt_overloaded(this_rq); if (likely(!rt_overload_count)) return; /* * Match the barrier from rt_set_overloaded; this guarantees that if we * see overloaded we must also see the rto_mask bit. */ smp_rmb(); /* If we are the only overloaded CPU do nothing */ //目前只有本cpu一个是rt_overload,那就没有必要去拉rt任务过来了 if (rt_overload_count == 1 && cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) return; #ifdef HAVE_RT_PUSH_IPI //若是使能了这个feature,就会通知其它CPU推任务到本rq,而不会执行拉任务的动作了 if (sched_feat(RT_PUSH_IPI)) { tell_cpu_to_push(this_rq); return; } #endif //对于每一个rt超载的cpu都执行 for_each_cpu(cpu, this_rq->rd->rto_mask) { //跳过本cpu,肯定不能从本cpu上往本cpu上拉任务 if (this_cpu == cpu) continue; src_rq = cpu_rq(cpu); /* * Don't bother taking the src_rq->lock if the next highest * task is known to be lower-priority than our current task. * This may look racy, but if this value is about to go * logically higher, the src_rq will push this task away. * And if its going logically lower, we do not care * 翻译: * 如果已知下一个最高优先级的任务的优先级低于当前任务的优先级,不需要 * 持有 src_rq->lock。 这可能看起来存在竞争,但如果这个值在逻辑上即将 * 变得更高,src_rq 将把这个任务推开。 如果它在逻辑上降低,我们不在乎 */ //只选最高优先级比自己的高的作为备选src_rq (enqueue时会更新) if (src_rq->rt.highest_prio.next >= this_rq->rt.highest_prio.curr) continue; /* * We can potentially drop this_rq's lock in * double_lock_balance, and another CPU could alter this_rq * 翻译: * 在 double_lock_balance 中可能会释放 this_rq 的锁,而另一个 * CPU 可能会更改 this_rq */ double_lock_balance(this_rq, src_rq); /* * We can pull only a task, which is pushable on its rq, and no others. */ //从src_rq上选出一个优先级最高的runnable的RT任务 p = pick_highest_pushable_task(src_rq, this_cpu); /* * Do we have an RT task that preempts the to-be-scheduled task? */ if (p && (p->prio < this_rq->rt.highest_prio.curr)) { WARN_ON(p == src_rq->curr); //选出的RT任务不能是src_rq上正在执行的任务 WARN_ON(!task_on_rq_queued(p)); //选出的RT任务不能是非runnable的任务 /* * There's a chance that p is higher in priority than what's currently * running on its CPU. This is just that p is wakeing up and hasn't had * a chance to schedule. We only pull p if it is lower in priority than * the current task on the run queue. */ /* 若选从src_rq上选出的p比src_rq上正在执行的任务优先级还高,就不跳过它, * 因为它可以抢占低优先级的任务从而很快被调度执行。 */ if (p->prio < src_rq->curr->prio) goto skip; resched = true; //从源src_rq上摘下来放到this_rq deactivate_task(src_rq, p, 0); set_task_cpu(p, this_cpu); activate_task(this_rq, p, 0); /* * We continue with the search, just in * case there's an even higher prio task * in another runqueue. (low likelihood * but possible) */ } skip: double_unlock_balance(this_rq, src_rq); } //若pull过来了任务,就触发一次抢占调度 if (resched) resched_curr(this_rq); }
(2) pick_highest_pushable_task 函数
/* * Return the highest pushable rq's task, which is suitable to be executed * on the CPU, NULL otherwise */ //传参: rq: 源rq, cpu: 目的地cpu static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) { struct plist_head *head = &rq->rt.pushable_tasks; struct task_struct *p; //判断 rq->rt.pushable_tasks 为空表示rq上没有可push的任务 if (!has_pushable_tasks(rq)) return NULL; /* * 按优先级由高到低遍历src_rq上的每一个可push的任务,若其非 * running且亲和性允许运行在目标cpu上就返回第一个满足条件的任务p */ plist_for_each_entry(p, head, pushable_tasks) { if (pick_rt_task(rq, p, cpu)) return p; } return NULL; } static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) { if (!task_running(rq, p) && cpumask_test_cpu(cpu, &p->cpus_allowed)) return 1; return 0; }
3.2 使能 RT_PUSH_IPI sched feat 的情况
pull_rt_task 逻辑委托给 tell_cpu_to_push(this_rq),让其它cpu往this_rq上push任务来代替拉任务,以减少拉任务带来的锁竞争。
(1) tell_cpu_to_push()函数:
static void tell_cpu_to_push(struct rq *rq) { int cpu = -1; /* Keep the loop going if the IPI is currently active */ //唯一增加其值的地方,没有降低其值的地方 atomic_inc(&rq->rd->rto_loop_next); /* Only one CPU can initiate a loop at a time */ if (!rto_start_trylock(&rq->rd->rto_loop_start)) return; raw_spin_lock(&rq->rd->rto_lock); /* * The rto_cpu is updated under the lock, if it has a valid CPU * then the IPI is still running and will continue due to the * update to loop_next, and nothing needs to be done here. * Otherwise it is finishing up and an ipi needs to be sent. */ //初始化为-1,只在 rto_next_cpu 中赋值为cpu id或-1 if (rq->rd->rto_cpu < 0) //返回一个rt overload 的cpu cpu = rto_next_cpu(rq->rd); raw_spin_unlock(&rq->rd->rto_lock); //将 rd->rto_loop_start 设置为0 rto_start_unlock(&rq->rd->rto_loop_start); if (cpu >= 0) { /* Make sure the rd does not get freed while pushing。rd->refcount++;*/ sched_get_rd(rq->rd); //向参数cpu指定的CPU上queue一个irq_work irq_work_queue_on(&rq->rd->rto_push_work, cpu); rto_push_irq_work_func } }
(2) rto_next_cpu 函数:
static int rto_next_cpu(struct root_domain *rd) { int next; int cpu; /* * When starting the IPI RT pushing, the rto_cpu is set to -1, * rt_next_cpu() will simply return the first CPU found in * the rto_mask. * * If rto_next_cpu() is called with rto_cpu is a valid CPU, it * will return the next CPU found in the rto_mask. * * If there are no more CPUs left in the rto_mask, then a check is made * against rto_loop and rto_loop_next. rto_loop is only updated with * the rto_lock held, but any CPU may increment the rto_loop_next * without any locking. */ for (;;) { /* When rto_cpu is -1 this acts like cpumask_first() */ cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); rd->rto_cpu = cpu; //正常情况下从这里就返回了 if (cpu < nr_cpu_ids) return cpu; //rto_mask中没有cpu掩码了,赋值为-1 rd->rto_cpu = -1; /* * ACQUIRE ensures we see the @rto_mask changes * made prior to the @next value observed. * * Matches WMB in rt_set_overload(). */ next = atomic_read_acquire(&rd->rto_loop_next); if (rd->rto_loop == next) break; rd->rto_loop = next; } return -1; }
(3) rto_push_irq_work_func 函数.
注意备注,是在硬中断上下文调用的。
/* Called from hardirq context */ void rto_push_irq_work_func(struct irq_work *work) { struct root_domain *rd =container_of(work, struct root_domain, rto_push_work); struct rq *rq; int cpu; rq = this_rq(); /* * We do not need to grab the lock to check for has_pushable_tasks. * When it gets updated, a check is made if a push is possible. */ if (has_pushable_tasks(rq)) { raw_spin_lock(&rq->lock); //触发push任务的流程 push_rt_tasks(rq); raw_spin_unlock(&rq->lock); } raw_spin_lock(&rd->rto_lock); /* Pass the IPI to the next rt overloaded queue */ //取出下一个rto cpu cpu = rto_next_cpu(rd); raw_spin_unlock(&rd->rto_lock); if (cpu < 0) { sched_put_rd(rd); return; } /* Try the next RT overloaded CPU */ /* * 自己queue自己,但是queue的cpu却是下一个rto cpu了,直到所有 * 的rto cpu都执行了push task的操作才停止。 */ irq_work_queue_on(&rd->rto_push_work, cpu); //rto_push_irq_work_func }
本文参考链接:https://www.cnblogs.com/hellokitty2/p/15974333.html