基于 Linux-5.10
一、概述
freq qos 主要用于cpu调频使用的,基于qos中的实现。与pm qos不同的是,前者只有系统级实现,位于 kernel/power/qos.c 中。
二、相关结构
enum pm_qos_req_action { PM_QOS_ADD_REQ, /* Add a new request */ PM_QOS_UPDATE_REQ, /* Update an existing request */ PM_QOS_REMOVE_REQ /* Remove an existing request */ }; #define FREQ_QOS_MIN_DEFAULT_VALUE 0 #define FREQ_QOS_MAX_DEFAULT_VALUE S32_MAX enum pm_qos_type { PM_QOS_UNITIALIZED, PM_QOS_MAX, /* return the largest value */ PM_QOS_MIN, /* return the smallest value */ }; enum freq_qos_req_type { FREQ_QOS_MIN = 1, FREQ_QOS_MAX, }; struct pm_qos_constraints { struct plist_head list; //所有此限制的freq_qos_request通过其pnode节点挂在这里 /* Do not change to 64 bit */ s32 target_value; //此限制,Qos最终体现的值 s32 default_value; s32 no_constraint_value; enum pm_qos_type type; struct blocking_notifier_head *notifiers; }; struct freq_constraints { struct pm_qos_constraints min_freq; struct blocking_notifier_head min_freq_notifiers; struct pm_qos_constraints max_freq; struct blocking_notifier_head max_freq_notifiers; }; struct freq_qos_request { enum freq_qos_req_type type; struct plist_node pnode; //数据是存在其prio成员中 struct freq_constraints *qos; ANDROID_OEM_DATA_ARRAY(1, 2); };
对频点的限制是一个区间,有最大值和最小值,所以 freq_constraints 中使用两个 pm_qos_constraints 成员表示。由结构中的两个notifier head可知,极大值和极小值改变后也是分别通知的。
三、相关函数
1. freq_constraints_init
/** * freq_constraints_init - Initialize frequency QoS constraints. * @qos: Frequency QoS constraints to initialize. */ void freq_constraints_init(struct freq_constraints *qos) { struct pm_qos_constraints *c; c = &qos->min_freq; plist_head_init(&c->list); c->target_value = FREQ_QOS_MIN_DEFAULT_VALUE; c->default_value = FREQ_QOS_MIN_DEFAULT_VALUE; c->no_constraint_value = FREQ_QOS_MIN_DEFAULT_VALUE; c->type = PM_QOS_MAX; c->notifiers = &qos->min_freq_notifiers; BLOCKING_INIT_NOTIFIER_HEAD(c->notifiers); c = &qos->max_freq; plist_head_init(&c->list); c->target_value = FREQ_QOS_MAX_DEFAULT_VALUE; c->default_value = FREQ_QOS_MAX_DEFAULT_VALUE; c->no_constraint_value = FREQ_QOS_MAX_DEFAULT_VALUE; c->type = PM_QOS_MIN; c->notifiers = &qos->max_freq_notifiers; BLOCKING_INIT_NOTIFIER_HEAD(c->notifiers); }
新分配一个 freq_constraints 结构后可以直接调用此函数,函数中分别对min_freq和max_freq进行初始化,这个函数没有export导出来。
注意其type的初始化。min_freq 这个限制赋值的type竟然是PM_QOS_MAX,而 max_freq 这个限制赋值的type竟然是PM_QOS_MIN!这样当限制最大频点的时候,pm_qos判断是PM_QOS_MIN,那么plist链表上生效的就是最小值,也就是说对最大频点的限制,谁限制的小谁生效。当限制最小频点的时候,pm_qos判断是PM_QOS_MAX,那么plist链表上生效的就是最大值,也就是说对最小频点的限制,谁限制的大谁生效。这是反着来利用Qos机制的!
2. freq_qos_add_notifier
/** * freq_qos_add_notifier - Add frequency QoS change notifier. * @qos: List of requests to add the notifier to. * @type: Request type. * @notifier: Notifier block to add. */ int freq_qos_add_notifier(struct freq_constraints *qos, enum freq_qos_req_type type, struct notifier_block *notifier) { int ret; if (IS_ERR_OR_NULL(qos) || !notifier) return -EINVAL; switch (type) { case FREQ_QOS_MIN: ret = blocking_notifier_chain_register(qos->min_freq.notifiers, notifier); break; case FREQ_QOS_MAX: ret = blocking_notifier_chain_register(qos->max_freq.notifiers, notifier); break; default: WARN_ON(1); ret = -EINVAL; } return ret; } EXPORT_SYMBOL_GPL(freq_qos_add_notifier);
注册一个notifier,根据参数 type,决定使用max的或min的 pm_qos_constraints::notifiers,notifier 参数中有指定优先级,优先级数值大的插入在链表前面,优先级数值小的插入后面,优先级数值若相同,先插入的在前面。notifier->notifier_call()里面会对感感兴趣的action进行响应。
其中,Qos最终频点限制值改变了,也是通过这个notifier机制更新通知修改的,也就是说cpufreq驱动必须注册两个notifier根据Qos来设置频点值,一个是设置MAX限制,一个是设置MIN限制。
3. freq_qos_remove_notifier
/** * freq_qos_remove_notifier - Remove frequency QoS change notifier. * @qos: List of requests to remove the notifier from. * @type: Request type. * @notifier: Notifier block to remove. */ int freq_qos_remove_notifier(struct freq_constraints *qos, enum freq_qos_req_type type, struct notifier_block *notifier) { int ret; if (IS_ERR_OR_NULL(qos) || !notifier) return -EINVAL; switch (type) { case FREQ_QOS_MIN: ret = blocking_notifier_chain_unregister(qos->min_freq.notifiers, notifier); break; case FREQ_QOS_MAX: ret = blocking_notifier_chain_unregister(qos->max_freq.notifiers, notifier); break; default: WARN_ON(1); ret = -EINVAL; } return ret; } EXPORT_SYMBOL_GPL(freq_qos_remove_notifier);
将此 notifier_block 结构从指定的 constraints 的 notifiers 链表上删除。任何对Qos的此限制感兴趣的都需要注册notifier,不再感兴趣时删除。在不需要对频点做要求时需要删除自己的 freq_qos_request 结构,否则它可能持续在生效,导致其它
freq_qos_request 表示的频点无法生效。
4. freq_qos_apply
/** * freq_qos_apply - Add/modify/remove frequency QoS request. * @req: Constraint request to apply. * @action: Action to perform (add/update/remove). * @value: Value to assign to the QoS request. * * This is only meant to be called from inside pm_qos, not drivers. */ int freq_qos_apply(struct freq_qos_request *req, enum pm_qos_req_action action, s32 value) { int ret; switch(req->type) { case FREQ_QOS_MIN: ret = pm_qos_update_target(&req->qos->min_freq, &req->pnode, action, value); break; case FREQ_QOS_MAX: ret = pm_qos_update_target(&req->qos->max_freq, &req->pnode, action, value); break; default: ret = -EINVAL; } return ret; }
只是在qos.c内部使用,没有导出。
/** * pm_qos_update_target - Update a list of PM QoS constraint requests. * @c: List of PM QoS requests. * @node: Target list entry. * @action: Action to carry out (add, update or remove). * @value: New request value for the target list entry. * * Update the given list of PM QoS constraint requests, @c, by carrying an * @action involving the @node list entry and @value on it. * * The recognized values of @action are PM_QOS_ADD_REQ (store @value in @node * and add it to the list), PM_QOS_UPDATE_REQ (remove @node from the list, store * @value in it and add it to the list again), and PM_QOS_REMOVE_REQ (remove * @node from the list, ignore @value). * * Return: 1 if the aggregate constraint value has changed, 0 otherwise. */ int pm_qos_update_target(struct pm_qos_constraints *c, struct plist_node *node, enum pm_qos_req_action action, int value) { int prev_value, curr_value, new_value; unsigned long flags; spin_lock_irqsave(&pm_qos_lock, flags); prev_value = pm_qos_get_value(c); //根据c->type是MAX还是MIN分别返回最后一个元素和第一个元素的prio的值(请求的值越大,越插入在后面) if (value == PM_QOS_DEFAULT_VALUE) //-1就是要设置默认值 new_value = c->default_value; else new_value = value; switch (action) { case PM_QOS_REMOVE_REQ: plist_del(node, &c->list); //从plist中删除此 freq_qos_request 结构 break; case PM_QOS_UPDATE_REQ: /* * To change the list, atomically remove, reinit with new value * and add, then see if the aggregate has changed. */ plist_del(node, &c->list); //从plist中删除此 freq_qos_request 结构,然后再重新插入 fallthrough; case PM_QOS_ADD_REQ: plist_node_init(node, new_value); //node->prio = new_value; 更新value plist_add(node, &c->list); //重新插入plist链表,prio(也就是request的value值)越大越插入后面,越小越插入前面 break; default: /* no action */ ; } curr_value = pm_qos_get_value(c); pm_qos_set_value(c, curr_value); //c->target_value=value,获取value时返回它 spin_unlock_irqrestore(&pm_qos_lock, flags); trace_pm_qos_update_target(action, prev_value, curr_value); if (prev_value == curr_value) return 0; /*最终结果就是发出一个notifier*/ if (c->notifiers) blocking_notifier_call_chain(c->notifiers, curr_value, NULL); return 1; } static int pm_qos_get_value(struct pm_qos_constraints *c) { if (plist_head_empty(&c->list)) return c->no_constraint_value; //empty 就返回 no_constraint_value switch (c->type) { case PM_QOS_MIN: return plist_first(&c->list)->prio; //最小就返回第一个元素 case PM_QOS_MAX: return plist_last(&c->list)->prio; //最大返回最后一个元素 default: WARN(1, "Unknown PM QoS type in %s\n", __func__); return PM_QOS_DEFAULT_VALUE; } }
注意,在add request时,prio越大(value值越大),越插入靠后,prio值越小,越插入靠前。这里获取PM_QOS_MIN值,返回的是plist链表第一个元素的值,返回的是最小值。获取PM_QOS_MAX值,返回的是plist链表最后一个元素的值,返回的是最大值。
freq_qos_add_request(&qos, &req, FREQ_QOS_MIN, FREQ_QOS_MAX_DEFAULT_VALUE/*S32_MAX*/) 就表示不限制最大频点了。之后再通过freq_qos_update_request(&req)来更新限制,否则任何其它人设置都无效了,因为这里已经设置了最大值,没有更大的合法值可以去设置了。
有个trace: trace_pm_qos_update_target,但是没有太大帮助,没有注明是哪个cluster的。
kthread-270 [004] .... 220691.970715: pm_qos_update_target: action=UPDATE_REQ prev_value=150 curr_value=2000000000 kthread-270 [004] .... 220691.970846: pm_qos_update_target: action=UPDATE_REQ prev_value=2000000000 curr_value=150
freq_qos_apply() 函数最终只是判断当前最终体现值 curr_value 和之前最终体现值 prev_value 是否相等,若是相等返回0,不相等就通过 pm_qos_constraints::notifiers 发出一个通知,这里只是一个通知而已。
5. freq_qos_add_request
/** * freq_qos_add_request - Insert new frequency QoS request into a given list. * @qos: Constraints to update. * @req: Preallocated request object. * @type: Request type. * @value: Request value. * * Insert a new entry into the @qos list of requests, recompute the effective * QoS constraint value for that list and initialize the @req object. The * caller needs to save that object for later use in updates and removal. * * Return 1 if the effective constraint value has changed, 0 if the effective * constraint value has not changed, or a negative error code on failures. */ int freq_qos_add_request(struct freq_constraints *qos, struct freq_qos_request *req, enum freq_qos_req_type type, s32 value) { int ret; if (IS_ERR_OR_NULL(qos) || !req) return -EINVAL; if (WARN(freq_qos_request_active(req), "%s() called for active request\n", __func__)) return -EINVAL; req->qos = qos; req->type = type; ret = freq_qos_apply(req, PM_QOS_ADD_REQ, value); if (ret < 0) { req->qos = NULL; req->type = 0; } trace_android_vh_freq_qos_add_request(qos, req, type, value, ret); return ret; } EXPORT_SYMBOL_GPL(freq_qos_add_request);
req 是新分配直接使用的。调用结果就是向指定的 pm_qos_constraints::list 链表上插入一个 freq_qos_request 成员,高优先级(数值大,prio=value)的插入在plist后面,低优先级的插入在前面。若是这个 request 值最终使 Qos 的值改变通过notifier发出通知的话,就返回1,否则返回0,失败返回负的错误码。可以看出添加request是实时生效的。
6. freq_qos_update_request
/** * freq_qos_update_request - Modify existing frequency QoS request. * @req: Request to modify. * @new_value: New request value. * * Update an existing frequency QoS request along with the effective constraint * value for the list of requests it belongs to. * * Return 1 if the effective constraint value has changed, 0 if the effective * constraint value has not changed, or a negative error code on failures. */ int freq_qos_update_request(struct freq_qos_request *req, s32 new_value) { if (!req) return -EINVAL; if (WARN(!freq_qos_request_active(req), "%s() called for unknown object\n", __func__)) return -EINVAL; trace_android_vh_freq_qos_update_request(req, new_value); mtk_freq_qos_update_request //hook只是一個打印 if (req->pnode.prio == new_value) return 0; return freq_qos_apply(req, PM_QOS_UPDATE_REQ, new_value); } EXPORT_SYMBOL_GPL(freq_qos_update_request);
使用新值替换 pm_qos_constraints::list 上对应 freq_qos_request::pnode::prio 的旧值。若最终Qos值改变了,发出通知并返回1,若最终Qos的值没有变,返回0。
7. freq_qos_remove_request
/** * freq_qos_remove_request - Remove frequency QoS request from its list. * @req: Request to remove. * * Remove the given frequency QoS request from the list of constraints it * belongs to and recompute the effective constraint value for that list. * * Return 1 if the effective constraint value has changed, 0 if the effective * constraint value has not changed, or a negative error code on failures. */ int freq_qos_remove_request(struct freq_qos_request *req) { int ret; if (!req) return -EINVAL; if (WARN(!freq_qos_request_active(req), "%s() called for unknown object\n", __func__)) return -EINVAL; trace_android_vh_freq_qos_remove_request(req); ret = freq_qos_apply(req, PM_QOS_REMOVE_REQ, PM_QOS_DEFAULT_VALUE); //此处参数3基本没用 req->qos = NULL; req->type = 0; return ret; } EXPORT_SYMBOL_GPL(freq_qos_remove_request);
移除 pm_qos_constraints::list 上对应 freq_qos_request ,移除后,若最终Qos值改变了,发出通知并返回1,若最终Qos的值没有变,返回0。
8. freq_qos_read_value
/* * freq_qos_read_value - Get frequency QoS constraint for a given list. * @qos: Constraints to evaluate. * @type: QoS request type. */ s32 freq_qos_read_value(struct freq_constraints *qos, enum freq_qos_req_type type) { s32 ret; switch (type) { case FREQ_QOS_MIN: ret = IS_ERR_OR_NULL(qos) ? FREQ_QOS_MIN_DEFAULT_VALUE : pm_qos_read_value(&qos->min_freq); break; case FREQ_QOS_MAX: ret = IS_ERR_OR_NULL(qos) ? FREQ_QOS_MAX_DEFAULT_VALUE : pm_qos_read_value(&qos->max_freq); break; default: WARN_ON(1); ret = 0; } return ret; }
此函数没有导出来。返回指定 pm_qos_constraints 的 target_value 值。它是在 pm_qos_update_target() 中更新的。若qos参数传null,就可以得到默认的最大最小值。
四、逻辑介绍
1. 调频模块先注册频点设置notifier函数
static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) //cpufreq.c { ... freq_constraints_init(&policy->constraints); //实际设置频点的函数 policy->nb_min.notifier_call = cpufreq_notifier_min; policy->nb_max.notifier_call = cpufreq_notifier_max; freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, &policy->nb_min); freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, &policy->nb_max); ... } //合二为一,通过work串行执行 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, void *data) { struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); schedule_work(&policy->update); //handle_update return 0; } static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, void *data) { struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); schedule_work(&policy->update); return 0; } static void handle_update(struct work_struct *work) { struct cpufreq_policy *policy = container_of(work, struct cpufreq_policy, update); down_write(&policy->rwsem); refresh_frequency_limits(policy); up_write(&policy->rwsem); } void refresh_frequency_limits(struct cpufreq_policy *policy) { if (!policy_is_inactive(policy)) { //return cpumask_empty(policy->cpus); cpufreq_set_policy(policy, policy->governor, policy->policy); } } static int cpufreq_set_policy(struct cpufreq_policy *policy, struct cpufreq_governor *new_gov, unsigned int new_pol) { ... new_data.freq_table = policy->freq_table; new_data.cpu = policy->cpu; //通过Qos获取最大最小频点限制 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); cpufreq_driver->verify(&new_data); //限制值设置到policy中 policy->min = new_data.min; policy->max = new_data.max; trace_cpu_frequency_limits(policy); if (new_gov == policy->governor) { cpufreq_governor_limits(policy); //这里调用到 policy->governor->limits(policy); return 0; } ... } static void sugov_limits(struct cpufreq_policy *policy) { struct sugov_policy *sg_policy = policy->governor_data; sg_policy->limits_changed = true; //只是设置了一个标记 } static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time) { s64 delta_ns; //若设置了限频,就不等达到频点变化延迟了,直接设置频点,新设置的频点会受到新限制的钳位 if (unlikely(sg_policy->limits_changed)) { sg_policy->limits_changed = false; sg_policy->need_freq_update = true; //唯一设置位置 return true; } delta_ns = time - sg_policy->last_freq_update_time; return delta_ns >= sg_policy->min_rate_limit_ns; } //调频函数 static void sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags) { if (sugov_should_update_freq(sg_policy, time)) { //判断需要设置才设置 next_f = sugov_next_freq_shared(sg_cpu, time); if (sg_policy->policy->fast_switch_enabled) sugov_fast_switch(sg_policy, time, next_f); //设置频点 else sugov_deferred_update(sg_policy, time, next_f); } } static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time, unsigned int next_freq) { struct cpufreq_policy *policy = sg_policy->policy; //这里也受 sg_policy->need_freq_update 的值影响 if (!sugov_update_next_freq(sg_policy, time, next_freq)) return; next_freq = cpufreq_driver_fast_switch(policy, next_freq); if (!next_freq) return; policy->cur = next_freq; } unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, unsigned int target_freq) { unsigned int freq; int cpu; //尊重Qos的限制值 target_freq = clamp_val(target_freq, policy->min, policy->max); //调用驱动设置频点 freq = cpufreq_driver->fast_switch(policy, target_freq); }
可以看到,频率限制时对频点的设置其实并不是完全实时的,它只是设置一个标志位而已。然后需要等到有调频调用,即cpufreq_update_util --> sugov_update_shared/sugov_update_single --> 判断有pending的限频导致的设置,就不用等,立即设置。
注册的notifier回调函数是通过queue work异步去限频了,因此失去了原线程的信息,并且 req_qos_update_request() 是支持在原子上下文中使用的。
2. 其它模块使用 freq_qos_add_request() / freq_qos_update_request() 来限制频点值
void set_each_cluster_maxfreq_to_2G() { struct freq_qos_request req; struct cpufreq_policy *policy; //每个cpu都限制到2GHz for_each_possible_cpu(cpu) { policy = cpufreq_cpu_get(cpu); freq_qos_add_request(&policy->constraints, &req, FREQ_QOS_MAX, 2000000000); cpu = cpumask_last(policy->related_cpus);//just cpu0 4 7 cpufreq_cpu_put(policy); } }
五、限制生效流程
由 Freq Qos 实现可值,当 qos_update 使 Qos 的最终限制结果改变时,会发出notifier,因此需要注册notifier block,并在接收到notifier通知后更新限频值,若当前频点不在新的限制范围内的话,还要设置当前频点。
//drivers/cpufreq/cpufreq.c static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) { struct cpufreq_policy *policy; struct device *dev = get_cpu_device(cpu); ... freq_constraints_init(&policy->constraints); //收到notifier通知后的回调函数 policy->nb_min.notifier_call = cpufreq_notifier_min; policy->nb_max.notifier_call = cpufreq_notifier_max; //注册 Freq Qos 限频后发出通知的响应函数 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, &policy->nb_min); ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, &policy->nb_max); //这个是处理函数,异步的 INIT_WORK(&policy->update, handle_update); ... }
响应回调函数:
static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, void *data) { struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); schedule_work(&policy->update); return 0; } static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, void *data) { struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); schedule_work(&policy->update); return 0; } static inline bool schedule_work(struct work_struct *work) { return queue_work(system_wq, work); //就会调用到 handle_update() }
异步执行策略变更设置:
static void handle_update(struct work_struct *work) { struct cpufreq_policy *policy = container_of(work, struct cpufreq_policy, update); pr_debug("handle_update for cpu %u called\n", policy->cpu); down_write(&policy->rwsem); refresh_frequency_limits(policy); up_write(&policy->rwsem); } void refresh_frequency_limits(struct cpufreq_policy *policy) { if (!policy_is_inactive(policy)) { pr_debug("updating policy for CPU %u\n", policy->cpu); cpufreq_set_policy(policy, policy->governor, policy->policy); } } EXPORT_SYMBOL(refresh_frequency_limits);
实际上是调用 cpufreq_set_policy() 来使限频策略更新的。
static int cpufreq_set_policy(struct cpufreq_policy *policy, struct cpufreq_governor *new_gov, unsigned int new_pol) { struct cpufreq_policy_data new_data; memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); new_data.freq_table = policy->freq_table; new_data.cpu = policy->cpu; //从Freq QoS 中读取min和max值 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); //验证一下,确保min <= max. ret = cpufreq_driver->verify(&new_data); //policy的min和max成员保存的是生效的最大频点和最小频点的限制值 policy->min = new_data.min; policy->max = new_data.max; //这里有个trace在限频策略生效时打印 trace_cpu_frequency_limits(policy); policy->cached_target_freq = UINT_MAX; pr_debug("new min and max freqs are %u - %u kHz\n", policy->min, policy->max); //cpufreq_driver若是有setpolicy回调则调用,但是通常driver不会定义这个回调 if (cpufreq_driver->setpolicy) { policy->policy = new_pol; pr_debug("setting range\n"); return cpufreq_driver->setpolicy(policy); } //相同govrnor的限频走这里 if (new_gov == policy->governor) { pr_debug("governor limits update\n"); cpufreq_governor_limits(policy); //相同governor走这里 return 0; } ... }
上面从Freq Qos获取的最大最小频点限制已经保存到 policy->min 和 policy->max 中了,限制的任务已经完成,之后的频点设置都会和policy的min和max比较,将频点钳位到min和max之间。之后就是实时的使限制值生效了,这是通过调用governor->limits()回调函数来完成的。
static void cpufreq_governor_limits(struct cpufreq_policy *policy) { //调用governor的limit回调来设置频点 if (policy->governor->limits) policy->governor->limits(policy); } static void sugov_limits(struct cpufreq_policy *policy) { struct sugov_policy *sg_policy = policy->governor_data; if (!policy->fast_switch_enabled) { mutex_lock(&sg_policy->work_lock); cpufreq_policy_apply_limits(policy); mutex_unlock(&sg_policy->work_lock); } sg_policy->limits_changed = true; } static inline void cpufreq_policy_apply_limits(struct cpufreq_policy *policy) { //只有在当前频点不在限制范围内才会设置 if (policy->max < policy->cur) __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H); else if (policy->min > policy->cur) __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L); }
这里判断了 policy->fast_switch_enabled 的值,若是为false就会调用下面函数直接设置频点。若是为true则不会立即设置,而是延后到下一次频点变更的时候进行设置,在 sugov_update_shared/sugov_update_single 中判断 sg_policy->limits_changed 为真时会立即更新频点,忽视up/down_rate_limit_us文件设置的值。
六、一个案例
/sys/devices/system/cpu/cpufreq/policyX 下的 scaling_max_freq 限制最大频点,scaling_mmin_freq 提底频,进行使用说明:
//include/linux/cpufreq.h struct cpufreq_policy { ... //这个是实体,可以使用 struct freq_constraints constraints; //freq_qos_add_request 时传参 FREQ_QOS_MIN,提底频使用它 struct freq_qos_request *min_freq_req; //freq_qos_add_request 时传参 FREQ_QOS_MAX,限制最大频点使用它 struct freq_qos_request *max_freq_req; ... } //drivers/cpufreq/cpufreq.c static int cpufreq_online(unsigned int cpu) { ... ret = freq_qos_add_request(&policy->constraints, policy->min_freq_req, FREQ_QOS_MIN, policy->min); ... ret = freq_qos_add_request(&policy->constraints, policy->max_freq_req, FREQ_QOS_MAX, policy->max); ... } //store_one(scaling_min_freq, min); 展开: static ssize_t store_scaling_min_freq(struct cpufreq_policy *policy, const char *buf, size_t count) { ... ret = freq_qos_update_request(policy->min_freq_req, val); ... } //store_one(scaling_max_freq, max); 展开: static ssize_t store_scaling_max_freq(struct cpufreq_policy *policy, const char *buf, size_t count) { ... ret = freq_qos_update_request(policy->max_freq_req, val); ... }
七、实验
1. 实验代码
/* 放到 kernel/sched 下面 */ #define pr_fmt(fmt) "freq_qos_debug: " fmt #include <linux/fs.h> #include <linux/sched.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/string.h> #include <linux/printk.h> #include <asm/topology.h> #include <linux/cpumask.h> #include <linux/cpufreq.h> #include <linux/pm_qos.h> #include <linux/plist.h> #include <linux/sched/topology.h> #include "sched.h" static struct freq_qos_request qos_req[2][3]; static int freq_qos_debug_show(struct seq_file *m, void *v) { int cpu = 4; struct freq_qos_request *pos; struct cpufreq_policy *policy; struct plist_head *plh_max, *plh_min; for_each_possible_cpu(cpu) { policy = cpufreq_cpu_get(cpu); if (!policy) { pr_info("cpufreq_cpu_get return null!\n"); return -EFAULT; } seq_printf(m, "policy->max=%u, policy->min=%u, policy->cur=%u\n", policy->max, policy->min, policy->cur); plh_max = &policy->constraints.max_freq.list; seq_printf(m, "max freq limit:\n"); plist_for_each_entry(pos, plh_max, pnode) { seq_printf(m, "pos->type=%d, pos->pnode.prio=%d\n", pos->type, pos->pnode.prio); } plh_min = &policy->constraints.min_freq.list; seq_printf(m, "min freq limit:\n"); plist_for_each_entry(pos, plh_min, pnode) { seq_printf(m, "pos->type=%d, pos->pnode.prio=%d\n", pos->type, pos->pnode.prio); } seq_printf(m, "\n"); cpu = cpumask_last(policy->related_cpus); cpufreq_cpu_put(policy); } return 0; } static int freq_qos_debug_open(struct inode *inode, struct file *file) { return single_open(file, freq_qos_debug_show, NULL); } static int freq_qos_debug_update_request(int cluster, int freq_req, int choose) { int ret = freq_qos_update_request(&qos_req[choose][cluster], freq_req); if (ret == 1) { pr_info("new freq_req=%u take effect.\n", freq_req); } else if (ret == 0) { pr_info("new freq_req=%u not take effect.\n", freq_req); } else if (ret < 0) { pr_err("new freq_req=%u update failed.\n", freq_req); } return ret; } static ssize_t freq_qos_debug_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { int ret; int cluster, min_max, freq_req; char buffer[64] = {0}; if (count >= sizeof(buffer)) { count = sizeof(buffer) - 1; } if (copy_from_user(buffer, buf, count)) { pr_info("copy_from_user failed\n"); return -EFAULT; } ret = sscanf(buffer, "%d %d %d", &cluster, &min_max, &freq_req); if(ret != 3){ pr_info("sscanf failed, ret=%d\n", ret); return -EINVAL; } if ((cluster < 0 || cluster > 2) || (min_max != 0 && min_max != 1)) { pr_info("cmd error: cluster=%d, freq=%d, choose=%d\n", cluster, freq_req, min_max); } pr_info("set: cluster=%d, freq=%d, choose=%s\n", cluster, freq_req, min_max==1 ? "max":"min"); freq_qos_debug_update_request(cluster, freq_req, min_max); return count; } //Linux5.10 change file_operations to proc_ops static const struct proc_ops freq_qos_debug_fops = { .proc_open = freq_qos_debug_open, .proc_read = seq_read, .proc_write = freq_qos_debug_write, .proc_lseek = seq_lseek, .proc_release = single_release, }; static int freq_qos_debug_add_request(void) { struct cpufreq_policy *policy; int ret, cpu; int i = 0; for_each_possible_cpu(cpu) { policy = cpufreq_cpu_get(cpu); if (!policy) { pr_info("cpufreq_cpu_get return null\n"); return -EFAULT; } ret = freq_qos_add_request(&policy->constraints, &qos_req[1][i], FREQ_QOS_MAX, FREQ_QOS_MAX_DEFAULT_VALUE); //要对max进行限制,默认是S32_MAX if (ret < 0) { pr_err("add qos request max failed. cpu=%d\n", cpu); return -EFAULT; } ret = freq_qos_add_request(&policy->constraints, &qos_req[0][i], FREQ_QOS_MIN, FREQ_QOS_MIN_DEFAULT_VALUE); //要对min进行限制,默认是0 if (ret < 0) { pr_err("add qos request min failed. cpu=%d\n", cpu); return -EFAULT; } cpu = cpumask_last(policy->related_cpus); cpufreq_cpu_put(policy); i++; } return ret; } static int __init freq_qos_debug_init(void) { proc_create("freq_qos_debug", S_IRUGO | S_IWUGO, NULL, &freq_qos_debug_fops); freq_qos_debug_add_request(); pr_info("freq_qos_debug probed\n"); /* * 若不编译成ko,编译进内核,打印的是 MODULE not defined! * 若编译成ko,打印的是 MODULE defined! */ #ifdef MODULE pr_info("MODULE defined!\n"); #else pr_info("MODULE not defined!\n"); #endif return 0; } //若不编译成模块,改成 late_initcall 仍然会打印 cpufreq_cpu_get return null late_initcall(freq_qos_debug_init); MODULE_DESCRIPTION("Freq Qos Debug"); MODULE_LICENSE("GPL v2"); //必须得有
补充:若编译成ko, MODULE宏就是定义的,此时各种 XXX_initcall(fn) 都为 module_init(fn),是不考虑插入优先级的,见include/linux/module.h。若编译进内核,则MODULE宏是没有定义的,是考虑优先级的,XXX_initcall(fn)分别对应各自的优先级,见include/linux/init.h。也比较容易理解,比如一个模块编译成了ko,那么它就是在insmod时单独加载的,指定优先级也没有意义。
2. 实验结果
# cat /proc/freq_qos_debug policy->max=1100000, policy->min=500000, policy->cur=500000 max freq limit: pos->type=2, pos->pnode.prio=1100000 pos->type=2, pos->pnode.prio=1800000 pos->type=2, pos->pnode.prio=2147483647 min freq limit: pos->type=1, pos->pnode.prio=0 pos->type=1, pos->pnode.prio=200000 pos->type=1, pos->pnode.prio=500000 policy->max=1800000, policy->min=200000, policy->cur=1400000 max freq limit: pos->type=2, pos->pnode.prio=1800000 pos->type=2, pos->pnode.prio=2850000 pos->type=2, pos->pnode.prio=2147483647 min freq limit: pos->type=1, pos->pnode.prio=0 pos->type=1, pos->pnode.prio=200000 policy->max=2300000, policy->min=1300000, policy->cur=1300000 max freq limit: pos->type=2, pos->pnode.prio=2300000 pos->type=2, pos->pnode.prio=3050000 pos->type=2, pos->pnode.prio=2147483647 min freq limit: pos->type=1, pos->pnode.prio=0 pos->type=1, pos->pnode.prio=1300000
3. 实验总结
通过设置实验可以看出,max选最小的,min选最大的,实验和理论对的上。/sys/devices/system/cpu/cpuX/cpufreq 下的 scaling_min_freq 文件,写它是 freq_qos_update_request() 一个对最小频点的限制值,cat它显示的是policy->min.
通过echo设置可以发现,若是设置并生效的min的限制值比当前max得限制值还大,min取max的值,相当于定频了,可以叫它向下定频。若设置并生效的max限制值比当前的min得限制值还小,此时max和min的频点都取设置并生效的max值,也相当于将频点定到设置的max值上,可以叫它向下定频。也可以理解为冲突后以对max的设定为准。
注:prio值越大越插入后面是正确的,通过移植plist链表验证过了。
八、补充
1. cpuinfo_max_freq 文件打印的是 struct cpufreq_policy 的 policy->cpuinfo.max_freq 的值,是此cluster支持的最大频点,是不受限频影响的值。而 scaling_max_freq 文件打印的是 policy->max,是限频的最大值。
2. cpuinfo_transition_latency:打印的单位是ns。
3. 增加支持insmod/rmmod, 通过异步work设置的debug代码
/* 放到 kernel/sched 下面 */ #define pr_fmt(fmt) "freq_qos_debug: " fmt #include <linux/fs.h> #include <linux/sched.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/string.h> #include <linux/printk.h> #include <asm/topology.h> #include <linux/cpumask.h> #include <linux/cpufreq.h> #include <linux/pm_qos.h> #include <linux/plist.h> #include <linux/sched/topology.h> #include <linux/workqueue.h> #include "sched.h" static struct freq_qos_request qos_req[2][3]; static int cluster_num; static int freq_qos_debug_show(struct seq_file *m, void *v) { int cpu = 4; struct freq_qos_request *pos; struct cpufreq_policy *policy; struct plist_head *plh_max, *plh_min; for_each_possible_cpu(cpu) { policy = cpufreq_cpu_get(cpu); if (!policy) { pr_info("cpufreq_cpu_get return null!\n"); return -EFAULT; } seq_printf(m, "policy->max=%u, policy->min=%u, policy->cur=%u\n", policy->max, policy->min, policy->cur); plh_max = &policy->constraints.max_freq.list; seq_printf(m, "max freq limit:\n"); plist_for_each_entry(pos, plh_max, pnode) { seq_printf(m, "pos->type=%d, pos->pnode.prio=%d\n", pos->type, pos->pnode.prio); } plh_min = &policy->constraints.min_freq.list; seq_printf(m, "min freq limit:\n"); plist_for_each_entry(pos, plh_min, pnode) { seq_printf(m, "pos->type=%d, pos->pnode.prio=%d\n", pos->type, pos->pnode.prio); } seq_printf(m, "\n"); cpu = cpumask_last(policy->related_cpus); cpufreq_cpu_put(policy); } return 0; } static int freq_qos_debug_open(struct inode *inode, struct file *file) { return single_open(file, freq_qos_debug_show, NULL); } static int freq_qos_debug_update_request(int cluster, int freq_req, int choose) { int ret = freq_qos_update_request(&qos_req[choose][cluster], freq_req); if (ret == 1) { pr_info("new freq_req=%u take effect.\n", freq_req); } else if (ret == 0) { pr_info("new freq_req=%u not take effect.\n", freq_req); } else if (ret < 0) { pr_err("new freq_req=%u update failed.\n", freq_req); } return ret; } struct qos_debug_work { int cluster; int freq_req; int choose; struct work_struct work; }; static struct qos_debug_work qdw[2]; static void noinline qos_debug_work_func_0(struct work_struct *work) { struct qos_debug_work *dw = container_of(work, struct qos_debug_work, work); freq_qos_debug_update_request(dw->cluster, dw->freq_req, dw->choose); } void noinline qos_debug_update_wrap(struct qos_debug_work *dw) { int cluster = dw->cluster; int freq_req = dw->freq_req; int choose = dw->choose; freq_qos_debug_update_request(cluster, freq_req, choose); } EXPORT_SYMBOL_GPL(qos_debug_update_wrap); //test %pS static void noinline qos_debug_work_func_1(struct work_struct *work) { struct qos_debug_work *dw = container_of(work, struct qos_debug_work, work); qos_debug_update_wrap(dw); } /* * usage: * # echo 0 1 500000 > /proc/freq_qos_debug //限制小核最大频点到500M * # echo 1 1 600000 > /proc/freq_qos_debug //限制中核最大频点到500M * # echo 2 1 700000 > /proc/freq_qos_debug //限制大核最大频点到500M * /sys/devices/system/cpu # find ./ -name scaling_max_freq | xargs cat * 600000 * 500000 * 700000 * */ static ssize_t freq_qos_debug_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { int ret; int cluster, min_max, freq_req; char buffer[64] = {0}; if (count >= sizeof(buffer)) { count = sizeof(buffer) - 1; } if (copy_from_user(buffer, buf, count)) { pr_info("copy_from_user failed\n"); return -EFAULT; } /* 依次echo三个参数 */ ret = sscanf(buffer, "%d %d %d", &cluster, &min_max, &freq_req); if(ret != 3){ pr_info("sscanf failed, ret=%d\n", ret); return -EINVAL; } if ((cluster < 0 || cluster > 2) || (min_max != 0 && min_max != 1)) { pr_info("cmd error: cluster=%d, freq=%d, choose=%d\n", cluster, freq_req, min_max); } pr_info("set: cluster=%d, freq=%d, choose=%s\n", cluster, freq_req, min_max==1 ? "max":"min"); if (cluster == 0) { freq_qos_debug_update_request(cluster, freq_req, min_max); } else if (cluster == 1){ qdw[0].cluster = cluster; qdw[0].freq_req = freq_req; qdw[0].choose = min_max; schedule_work(&qdw[0].work); //work func 只有一层就直接调用freq_qos_update } else if (cluster == 2){ qdw[1].cluster = cluster; qdw[1].freq_req = freq_req; qdw[1].choose = min_max; schedule_work(&qdw[1].work); //work func 有二层才调用freq_qos_update } return count; } //Linux5.10 change file_operations to proc_ops static const struct proc_ops freq_qos_debug_fops = { .proc_open = freq_qos_debug_open, .proc_read = seq_read, .proc_write = freq_qos_debug_write, .proc_lseek = seq_lseek, .proc_release = single_release, }; static int freq_qos_debug_add_request(void) { struct cpufreq_policy *policy; int ret, cpu; int i = 0; for_each_possible_cpu(cpu) { policy = cpufreq_cpu_get(cpu); if (!policy) { pr_info("cpufreq_cpu_get return null\n"); return -EFAULT; } ret = freq_qos_add_request(&policy->constraints, &qos_req[1][i], FREQ_QOS_MAX, FREQ_QOS_MAX_DEFAULT_VALUE); //要对max进行限制,默认是S32_MAX if (ret < 0) { pr_err("add qos request max failed. cpu=%d\n", cpu); return -EFAULT; } ret = freq_qos_add_request(&policy->constraints, &qos_req[0][i], FREQ_QOS_MIN, FREQ_QOS_MIN_DEFAULT_VALUE); //要对min进行限制,默认是0 if (ret < 0) { pr_err("add qos request min failed. cpu=%d\n", cpu); return -EFAULT; } cpu = cpumask_last(policy->related_cpus); cpufreq_cpu_put(policy); i++; } cluster_num = i; return ret; } static int freq_qos_debug_remove_request(void) { int i, j, ret = 0; for (i = 0; i < 2; i++) { for (j = 0; j < cluster_num; j++) { ret = freq_qos_remove_request(&qos_req[i][j]); if (ret < 0) { pr_info("remove failed, i=%d, j=%d\n", i, j); } } } return ret; } //for insmod and remmod static void global_val_reset(void) { memset(&qos_req, 0, sizeof(qos_req)); memset(&cluster_num, 0, sizeof(cluster_num)); memset(&qdw, 0, sizeof(qdw)); } static int __init freq_qos_debug_init(void) { global_val_reset(); INIT_WORK(&qdw[0].work, qos_debug_work_func_0); INIT_WORK(&qdw[1].work, qos_debug_work_func_1); freq_qos_debug_add_request(); proc_create("freq_qos_debug", S_IRUGO | S_IWUGO, NULL, &freq_qos_debug_fops); pr_info("freq_qos_debug probed!\n"); /* * 若不编译成ko,编译进内核,打印的是 MODULE not defined! * 若编译成ko,打印的是 MODULE defined! */ #ifdef MODULE pr_info("MODULE defined!\n"); #else pr_info("MODULE not defined!\n"); #endif return 0; } //若不编译成模块,改成 late_initcall 仍然会打印 cpufreq_cpu_get return null #if 0 late_initcall(freq_qos_debug_init); #else static void __exit freq_qos_debug_exit(void) { remove_proc_entry("freq_qos_debug", NULL); freq_qos_debug_remove_request(); pr_info("freq_qos_debug exit!\n"); } module_init(freq_qos_debug_init); module_exit(freq_qos_debug_exit); #endif MODULE_DESCRIPTION("Freq Qos Debug"); MODULE_LICENSE("GPL v2");
4. 确认req是对哪个cluster的req,按个函数调用这个请求
freq_qos_update_request(struct freq_qos_request *req, s32 new_value) //kernel/power/qos.c trace_android_vh_freq_qos_update_request(req, new_value); //插桩位置
这里只有一个 struct freq_qos_request * 类型的 req,其 req->qos 成员会指向各个cluster的 struct cpufreq_policy *policy 的 constraints 成员,可以利用这层关系,通过 for_each_possible_cpu/cpufreq_cpu_get 提前保存 policy->constraints 的地址,就可以区分 req 是对哪个cluster的请求了。
追踪是哪个函数调用了 freq_qos_update_request,可以在上面插桩位置以"%pS"格式打印 __builtin_return_address(1) 即可实现,打印出的函数名的格式如 qos_debug_work_func_1+0x50/0xa4 [freq_qos_debug]。
本文参考链接:https://www.cnblogs.com/hellokitty2/p/15685048.html