Skip to main content
 首页 » 编程设计

理解Android Binder机制(3/3):Java层

2022年07月19日144yxwkf

1. 在AOSP源码树中的路径

// Binder Framework JNI 
/frameworks/base/core/jni/android_util_Binder.h 
/frameworks/base/core/jni/android_util_Binder.cpp 
/frameworks/base/core/jni/android_os_Parcel.h 
/frameworks/base/core/jni/android_os_Parcel.cpp 
 
// Binder Framework Java接口 
/frameworks/base/core/java/android/os/Binder.java 
/frameworks/base/core/java/android/os/IBinder.java 
/frameworks/base/core/java/android/os/IInterface.java 
/frameworks/base/core/java/android/os/Parcel.java

2. 主要结构

Android应用程序使用Java语言开发,Binder框架自然也少不了在Java层提供接口。

前文中我们看到,Binder机制在C++层已经有了完整的实现。因此Java层完全不用重复实现,而是通过JNI衔接了C++层以复用其实现。

下图描述了Binder Framework Java层到C++层的衔接关系。

这里对图中Java层和JNI层的几个类做一下说明:

名称                类型           说明 
------------------------------------------------------------------- 
IInterface          interface      供Java层Binder服务接口继承的接口 
IBinder             interface      Java层的IBinder类,提供了transact方法来调用远程服务 
Binder              class          实现了IBinder接口,封装了JNI的实现。Java层Binder服务的基类 
BinderProxy         class          实现了IBinder接口,封装了JNI的实现。提供transact方法调用远程服务 
JavaBBinderHolder   class          内部存储了JavaBBinder 
JavaBBinder         class          将C++端的onTransact调用传递到Java端 
Parcel              class          Java层的数据包装器,见C++层的Parcel类分析

这里的IInterface,IBinder和C++层的两个类是同名的。这个同名并不是巧合:它们不仅仅同名,它们所起的作用,以及其中包含的接口都是几乎一样的,区别仅仅在于一个是C++层,一个是Java层而已。

除了IInterface,IBinder之外,这里Binder与BinderProxy类也是与C++的类对应的,下面列出了Java层和C++层类的对应关系:

C++             Java层 
--------------------------- 
IInterface      IInterface 
IBinder         IBinder 
BBinder         Binder 
BpProxy         BinderProxy 
Parcel          Parcel

3. JNI的衔接

JNI全称是Java Native Interface,这个是由Java虚拟机提供的机制。这个机制使得native代码可以和Java代码互相通讯。简单来说就是:我们可以在C/C++端调用Java代码,也可以在Java端调用C/C++代码。

关于JNI的详细说明,可以参见Oracle的官方文档:Java Native Interface ,这里不多说明。

实际上,在Android中很多的服务或者机制都是在C/C++层实现的,想要将这些实现复用到Java层,就必须通过JNI进行衔接。AOSP源码中, /frameworks/base/core/jni/ 目录下的源码就是专门用来对接Framework层的JNI实现的。

看一下Binder.java的实现就会发现,这里面有不少的方法都是用native关键字修饰的,并且没有方法实现体,这些方法其实都是在C++中实现的:

public static final native int getCallingPid(); 
public static final native int getCallingUid(); 
public static final native long clearCallingIdentity(); 
public static final native void restoreCallingIdentity(long token); 
public static final native void setThreadStrictModePolicy(int policyMask); 
public static final native int getThreadStrictModePolicy(); 
public static final native void flushPendingCommands(); 
public static final native void joinThreadPool();

在 android_util_Binder.cpp 文件中的下面这段代码,设定了Java方法与C++方法的对应关系:

static const JNINativeMethod gBinderMethods[] = { 
    { "getCallingPid", "()I", (void*)android_os_Binder_getCallingPid }, 
    { "getCallingUid", "()I", (void*)android_os_Binder_getCallingUid }, 
    { "clearCallingIdentity", "()J", (void*)android_os_Binder_clearCallingIdentity }, 
    { "restoreCallingIdentity", "(J)V", (void*)android_os_Binder_restoreCallingIdentity }, 
    { "setThreadStrictModePolicy", "(I)V", (void*)android_os_Binder_setThreadStrictModePolicy }, 
    { "getThreadStrictModePolicy", "()I", (void*)android_os_Binder_getThreadStrictModePolicy }, 
    { "flushPendingCommands", "()V", (void*)android_os_Binder_flushPendingCommands }, 
    { "init", "()V", (void*)android_os_Binder_init }, 
    { "destroy", "()V", (void*)android_os_Binder_destroy }, 
    { "blockUntilThreadAvailable", "()V", (void*)android_os_Binder_blockUntilThreadAvailable } 
};

这种对应关系意味着:当 Binder.java 中的 getCallingPid 方法被调用的时候,真正的实现其实是 android_os_Binder_getCallingPid,当 getCallingUid 方法被调用的时候,真正的实现其实是 android_os_Binder_getCallingUid,其他类同。

然后我们再看一下 android_os_Binder_getCallingPid 方法的实现就会发现,这里其实就是对接到了 libbinder 中了:

static jint android_os_Binder_getCallingPid(JNIEnv* env, jobject clazz) 
{ 
    return IPCThreadState::self()->getCallingPid(); 
}

这里看到了Java端的代码是如何调用的 libbinder 中的C++方法的。那么,相反的方向是如何调用的呢?最关键的,libbinder 中的 BBinder::onTransact 是如何能够调用到Java中的 Binder::onTransact 的呢?

这段逻辑就是 android_util_Binder.cpp 中 JavaBBinder::onTransact 中处理的了。JavaBBinder 是 BBinder 子类,其类结构如下:

JavaBBinder::onTransact关键代码如下:

virtual status_t onTransact(uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags = 0) 
{ 
   JNIEnv* env = javavm_to_jnienv(mVM); 
 
   IPCThreadState* thread_state = IPCThreadState::self(); 
   const int32_t strict_policy_before = thread_state->getStrictModePolicy(); 
 
   jboolean res = env->CallBooleanMethod(mObject, gBinderOffsets.mExecTransact, 
       code, reinterpret_cast<jlong>(&data), reinterpret_cast<jlong>(reply), flags); 
   ... 
}

请注意这段代码中的这一行:

jboolean res = env->CallBooleanMethod(mObject, gBinderOffsets.mExecTransact, 
  code, reinterpret_cast<jlong>(&data), reinterpret_cast<jlong>(reply), flags);

这一行代码其实是在调用 mObject 上 offset 为 mExecTransact 的方法。这里的几个参数说明如下:

  a. mObject 指向了Java端的Binder对象
  b. gBinderOffsets.mExecTransact 指向了Binder类的 execTransact 方法
  c. data 调用 execTransact 方法的参数
  d. code, data, reply, flags 都是传递给调用方法 execTransact 的参数

而 JNIEnv.CallBooleanMethod 这个方法是由虚拟机实现的。即:虚拟机会提供native方法来调用一个Java Object上的方法(关于Android上的Java虚拟机,今后我们会专门讲解)。

这样,就在C++层的 JavaBBinder::onTransact 中调用了Java层  Binder::execTransact  方法。而在 Binder::execTransact 方法中,又调用了自身的 onTransact 方法,由此保证整个过程串联了起来:

private boolean execTransact(int code, long dataObj, long replyObj, 
       int flags) { 
   Parcel data = Parcel.obtain(dataObj); 
   Parcel reply = Parcel.obtain(replyObj); 
   boolean res; 
   try { 
       res = onTransact(code, data, reply, flags); 
   } catch (RemoteException|RuntimeException e) { 
       if (LOG_RUNTIME_EXCEPTION) { 
           Log.w(TAG, "Caught a RuntimeException from the binder stub implementation.", e); 
       } 
       if ((flags & FLAG_ONEWAY) != 0) { 
           if (e instanceof RemoteException) { 
               Log.w(TAG, "Binder call failed.", e); 
           } else { 
               Log.w(TAG, "Caught a RuntimeException from the binder stub implementation.", e); 
           } 
       } else { 
           reply.setDataPosition(0); 
           reply.writeException(e); 
       } 
       res = true; 
   } catch (OutOfMemoryError e) { 
       RuntimeException re = new RuntimeException("Out of memory", e); 
       reply.setDataPosition(0); 
       reply.writeException(re); 
       res = true; 
   } 
   checkParcel(this, code, reply, "Unreasonably large binder reply buffer"); 
   reply.recycle(); 
   data.recycle(); 
 
   StrictMode.clearGatheredViolations(); 
 
   return res; 
}

4. Java Binder服务举例

和C++层一样,这里我们还是通过一个具体的实例来看一下Java层的Binder服务是如何实现的。

下图是 ActivityManager 实现的类图:

下面是上图中几个类的说明:

类名                      说明 
---------------------------------------------- 
IActivityManager          Binder服务的公共接口 
ActivityManagerProxy      供客户端调用的远程接口 
ActivityManagerNative     Binder服务实现的基类 
ActivityManagerService    Binder服务的真正实现

看过Binder C++层实现之后,对于这个结构应该也是很容易理解的,组织结构和C++层服务的实现是一模一样的。

对于Android应用程序的开发者来说,我们不会直接接触到上图中的几个类,而是使用 android.app.ActivityManager 中的接口。

这里我们就来看一下,android.app.ActivityManager 中的接口与上图的实现是什么关系。我们选取其中的一个方法来看一下:

public void getMemoryInfo(MemoryInfo outInfo) { 
   try { 
       ActivityManagerNative.getDefault().getMemoryInfo(outInfo); 
   } catch (RemoteException e) { 
       throw e.rethrowFromSystemServer(); 
   } 
}

这个方法的实现调用了 ActivityManagerNative.getDefault() 中的方法,因此我们在来看一下 ActivityManagerNative.getDefault() 返回到到底是什么。

static public IActivityManager getDefault() { 
   return gDefault.get(); 
} 
 
private static final Singleton<IActivityManager> gDefault = new Singleton<IActivityManager>() { 
   protected IActivityManager create() { 
       IBinder b = ServiceManager.getService("activity"); 
       if (false) { 
           Log.v("ActivityManager", "default service binder = " + b); 
       } 
       IActivityManager am = asInterface(b); 
       if (false) { 
           Log.v("ActivityManager", "default service = " + am); 
       } 
       return am; 
   } 
};

这段代码中我们看到,这里其实是先通过 IBinder b = ServiceManager.getService("activity"); 获取 ActivityManager 的 Binder 对象(“activity” 是ActivityManagerService的Binder 服务标识),接着我们再来看一下 asInterface(b) 的实现:

static public IActivityManager asInterface(IBinder obj) { 
   if (obj == null) { 
       return null; 
   } 
   IActivityManager in = (IActivityManager)obj.queryLocalInterface(descriptor); 
   if (in != null) { 
       return in; 
   } 
 
   return new ActivityManagerProxy(obj); 
}

这里应该是比较明白了:首先通过 queryLocalInterface 确定有没有本地Binder,如果有的话直接返回,否则创建一个 ActivityManagerProxy 对象。很显然,假设在 ActivityManagerService 所在的进程调用这个方法,那么 queryLocalInterface 将直接返回本地Binder,而假设在其他进程中调用,这个方法将返回空,由此导致其他调用获取到的对象其实就是 ActivityManagerProxy。而在拿到 ActivityManagerProxy 对象之后在调用其方法所走的路线我想读者应该也能明白了:那就是通过Binder驱动跨进程调用 ActivityManagerService 中的方法。

这里的 asInterface 方法的实现会让我们觉得似曾相识。是的,因为这里的实现方式和C++层的实现是一样的模式。


5. Java层的ServiceManager

源码路径:

frameworks/base/core/java/android/os/IServiceManager.java 
frameworks/base/core/java/android/os/ServiceManager.java 
frameworks/base/core/java/android/os/ServiceManagerNative.java 
frameworks/base/core/java/com/android/internal/os/BinderInternal.java 
frameworks/base/core/jni/android_util_Binder.cpp

有Java端的Binder服务,自然也少不了Java端的 ServiceManager。我们先看一下Java端的 ServiceManager 的结构:

通过这个类图我们看到,Java层的 ServiceManager 和C++层的接口是一样的。

然后我们再选取 addService 方法看一下实现:

public static void addService(String name, IBinder service, boolean allowIsolated) { 
   try { 
       getIServiceManager().addService(name, service, allowIsolated); 
   } catch (RemoteException e) { 
       Log.e(TAG, "error in addService", e); 
   } 
} 
 
   private static IServiceManager getIServiceManager() { 
   if (sServiceManager != null) { 
       return sServiceManager; 
   } 
 
   // Find the service manager 
   sServiceManager = ServiceManagerNative.asInterface(BinderInternal.getContextObject()); 
   return sServiceManager; 
}

很显然,这段代码中,最关键就是 ServiceManagerNative.asInterface 这个调用,然后我们需要再看一下 BinderInternal.getContextObject() 和 ServiceManagerNative.asInterface 两个方法。

BinderInternal.getContextObject() 是一个JNI方法,其实现代码在 android_util_Binder.cpp 中:

static jobject android_os_BinderInternal_getContextObject(JNIEnv* env, jobject clazz) 
{ 
    sp<IBinder> b = ProcessState::self()->getContextObject(NULL); 
    return javaObjectForIBinder(env, b); 
}

而 ServiceManagerNative.asInterface 的实现和其他的Binder服务是一样的套路:

static public IServiceManager asInterface(IBinder obj) 
{ 
   if (obj == null) { 
       return null; 
   } 
   IServiceManager in = (IServiceManager)obj.queryLocalInterface(descriptor); 
   if (in != null) { 
       return in; 
   } 
   return new ServiceManagerProxy(obj); 
}

先通过 queryLocalInterface 查看能不能获得本地Binder,如果无法获取,则创建并返回 ServiceManagerProxy 对象。

而 ServiceManagerProxy 自然也是和其他Binder Proxy一样的实现套路:

public void addService(String name, IBinder service, boolean allowIsolated) throws RemoteException { 
   Parcel data = Parcel.obtain(); 
   Parcel reply = Parcel.obtain(); 
   data.writeInterfaceToken(IServiceManager.descriptor); 
   data.writeString(name); 
   data.writeStrongBinder(service); 
   data.writeInt(allowIsolated ? 1 : 0); 
   mRemote.transact(ADD_SERVICE_TRANSACTION, data, reply, 0); 
   reply.recycle(); 
   data.recycle(); 
}

有了上文的讲解,这段代码应该都是比较容易理解的了。

6. 关于AIDL

作为Binder机制的最后一个部分内容,我们来讲解一下开发者经常使用的AIDL机制是怎么回事。

AIDL全称是Android Interface Definition Language,它是Android SDK提供的一种机制。借助这个机制,应用可以提供跨进程的服务供其他应用使用。AIDL的详细说明可以参见官方开发文档:https://developer.android.com/guide/components/aidl.html 。

这里,我们就以官方文档上的例子看来一下AIDL与Binder框架的关系。

开发一个基于AIDL的Service需要三个步骤:

  a. 定义一个.aidl文件
  b. 实现接口
  c. 暴露接口给客户端使用

aidl文件使用Java语言的语法来定义,每个.aidl文件只能包含一个interface,并且要包含interface的所有方法声明。

默认情况下,AIDL支持的数据类型包括:

  a. 基本数据类型(即int,long,char,boolean等)
  b. String
  c. CharSequence
  d. List(List的元素类型必须是AIDL支持的)
  e. Map(Map中的元素必须是AIDL支持的)

对于AIDL中的接口,可以包含0个或多个参数,可以返回void或一个值。所有非基本类型的参数必须包含一个描述是数据流向的标签,可能的取值是:in,out 或者 inout

下面是一个aidl文件的示例:

// IRemoteService.aidl 
package com.example.android; 
 
// Declare any non-default types here with import statements 
 
/** Example service interface */ 
interface IRemoteService { 
    /** Request the process ID of this service, to do evil things with it. */ 
    int getPid(); 
 
    /** Demonstrates some basic types that you can use as parameters 
     * and return values in AIDL. 
     */ 
    void basicTypes(int anInt, long aLong, boolean aBoolean, float aFloat, double aDouble, String aString); 
}

这个文件中包含了两个接口 :
getPid 一个无参的接口,返回值类型为int
basicTypes,包含了几个基本类型作为参数的接口,无返回值

对于包含.aidl文件的工程,Android IDE(以前是Eclipse,现在是Android Studio)在编译项目的时候,会为aidl文件生成对应的Java文件。

针对上面这个aidl文件生成的java文件中包含的结构如下图所示:

在这个生成的Java文件中,包括了:
  a. 一个名称为 IRemoteService 的 interface,该 interface 继承自 android.os.IInterface 并且包含了我们在aidl文件中声明的接口方法
  b. IRemoteService 中包含了一个名称为 Stub 的静态内部类,这个类是一个抽象类,它继承自 android.os.Binder 并且实现了 IRemoteService 接口。这个类中包含了一个 onTransact 方法
  c. Stub 内部又包含了一个名称为 Proxy 的静态内部类,Proxy 类同样实现了 IRemoteService 接口

仔细看一下Stub类和Proxy两个中包含的方法,是不是觉得很熟悉?是的,这里和前面介绍的服务实现是一样的模式。这里我们列一下各层类的对应关系:

C++       Java层       AIDL 
------------------------------------- 
BpXXX     XXXProxy    IXXX.Stub.Proxy 
BnXXX     XXXNative   IXXX.Stub

为了整个结构的完整性,最后我们还是来看一下生成的Stub和Proxy类中的实现逻辑。

Stub是提供给开发者实现业务的父类,而Proxy的实现了对外提供的接口。Stub和Proxy两个类都有一个asBinder的方法。

Stub类中的asBinder实现就是返回自身对象:

@Override 
public android.os.IBinder asBinder() { 
    return this; 
} 
而Proxy中asBinder的实现是返回构造函数中获取的mRemote对象,相关代码如下: 
 
private android.os.IBinder mRemote; 
 
Proxy(android.os.IBinder remote) { 
    mRemote = remote; 
} 
 
@Override 
public android.os.IBinder asBinder() { 
    return mRemote; 
}

而这里的 mRemote 对象其实就是远程服务在当前进程的标识。

上文我们说了,Stub类是用来提供给开发者实现业务逻辑的父类,开发者者继承自Stub然后完成自己的业务逻辑实现,例如这样:

private final IRemoteService.Stub mBinder = new IRemoteService.Stub() { 
   public int getPid(){ 
       return Process.myPid(); 
   } 
   public void basicTypes(int anInt, long aLong, boolean aBoolean, 
       float aFloat, double aDouble, String aString) { 
       // Does something 
   } 
};

而这个Proxy类,就是用来给调用者使用的对外接口。我们可以看一下Proxy中的接口到底是如何实现的:

Proxy中getPid方法实现如下所示:

@Override 
public int getPid() throws android.os.RemoteException { 
    android.os.Parcel _data = android.os.Parcel.obtain(); 
    android.os.Parcel _reply = android.os.Parcel.obtain(); 
    int _result; 
    try { 
        _data.writeInterfaceToken(DESCRIPTOR); 
        mRemote.transact(Stub.TRANSACTION_getPid, _data, _reply, 0); 
        _reply.readException(); 
        _result = _reply.readInt(); 
    } finally { 
        _reply.recycle(); 
        _data.recycle(); 
    } 
    return _result; 
}

这里就是通过Parcel对象以及transact调用对应远程服务的接口。而在Stub类中,生成的 onTransact 方法对应的处理了这里的请求:

@Override 
public boolean onTransact(int code, android.os.Parcel data, android.os.Parcel reply, int flags) 
        throws android.os.RemoteException { 
    switch (code) { 
    case INTERFACE_TRANSACTION: { 
        reply.writeString(DESCRIPTOR); 
        return true; 
    } 
    case TRANSACTION_getPid: { 
        data.enforceInterface(DESCRIPTOR); 
        int _result = this.getPid(); 
        reply.writeNoException(); 
        reply.writeInt(_result); 
        return true; 
    } 
    case TRANSACTION_basicTypes: { 
        data.enforceInterface(DESCRIPTOR); 
        int _arg0; 
        _arg0 = data.readInt(); 
        long _arg1; 
        _arg1 = data.readLong(); 
        boolean _arg2; 
        _arg2 = (0 != data.readInt()); 
        float _arg3; 
        _arg3 = data.readFloat(); 
        double _arg4; 
        _arg4 = data.readDouble(); 
        java.lang.String _arg5; 
        _arg5 = data.readString(); 
        this.basicTypes(_arg0, _arg1, _arg2, _arg3, _arg4, _arg5); 
        reply.writeNoException(); 
        return true; 
    } 
    } 
    return super.onTransact(code, data, reply, flags); 
}

onTransact所要做的就是:
  a. 根据 code 区分请求的是哪个接口
  b. 通过 data 来获取请求的参数
  c. 调用由子类实现的抽象方法

有了前文的讲解,对于这部分内容应当不难理解了。

到这里,我们终于讲解完Binder了。


参考:https://paul.pub/android-binder-java/ 及其参考


本文参考链接:https://www.cnblogs.com/hellokitty2/p/16391193.html